By Topic

Call admission control for integrated on/off voice and best-effort data services in mobile cellular communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Leong, C.W. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Ont., Canada ; Weihua Zhuang ; Yu Cheng ; Lei Wang

This paper proposes a call admission control (CAC) policy for a cellular system supporting voice and data services, and providing a higher priority to handoff calls than to new calls. A procedure for searching the optimal admission region is given. The traffic flow is characterized by a three-dimensional (3-D) birth-death model, which captures the complex interaction between the on/off voice and best-effort data traffic sharing the total resources without partition. To reduce complexity, the 3-D model is simplified to an exact (approximate) 2-D model for voice (data). The mathematical expressions are then derived for the performance measures and for the minimal amount of resources required for quality-of-service (QoS) provisioning. Numerical results demonstrate that: 1) the proposed CAC policy performs well in terms of QoS satisfaction and resource utilization; 2) the approximate 2-D model for data traffic can achieve a high accuracy in the traffic flow characterization; and 3) the admission regions obtained by the proposed search method agree very well with those obtained by numerically solving the mathematical equations. Furthermore, computer simulation results demonstrate that the impact of lognormal distributed data file size is not significant, and may be compensated by conservatively applying the Markovian analysis results.

Published in:

Communications, IEEE Transactions on  (Volume:52 ,  Issue: 5 )