By Topic

A pre-BLAST-DFE technique for the downlink of frequency-selective fading MIMO channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lai-U Choi ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., China ; Murch, R.D.

In this paper, we propose a pre-Bell Laboratories layered space-time (BLAST)-decision-feedback equalization technique for the downlink of frequency-selective fading multiple-input multiple-output (MIMO) channels to combat multiple-access interference (MAI) and intersymbol interference (ISI). In our technique, we perform MIMO pre-equalization and prelayered space-time processing at the transmitter or base station, with a simplified receiver at the mobile station that requires only limited signal processing. An important application is in the downlink, so that a simplified mobile station can be constructed. An expression for the signal-to-noise ratio (SNR) and error probability based on the Gaussian approximation of the output noise term is derived. Performance is investigated by analysis and simulation results. In particular, it is demonstrated that the diversity order of this technique is higher than that of the MIMO orthogonal frequency-division multiplexing (OFDM) with vertical (V)-BLAST and MIMO OFDM with linear transmit preprocessing. It is also noticed that this technique performs better at high SNR values.

Published in:

Communications, IEEE Transactions on  (Volume:52 ,  Issue: 5 )