By Topic

Reachability and steering of rolling polyhedra: a case study in discrete nonholonomy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bicchi, A. ; Centro Interdipartimentale di Ricerca, Univ. of Pisa, Italy ; Chitour, Y. ; Marigo, A.

Rolling a ball on a plane is a standard example of nonholonomy reported in many textbooks, and the problem is also well understood for any smooth deformation of the surfaces. For nonsmoothly deformed surfaces, however, much less is known. Although it may seem intuitive that nonholonomy is conserved (think e.g. to polyhedral approximations of smooth surfaces), current definitions of "nonholonomy" are inherently referred to systems described by ordinary differential equations, and are thus inapplicable to such systems. In this paper, we study the set of positions and orientations that a polyhedral part can reach by rolling on a plane through sequences of adjacent faces. We provide a description of such reachable set, discuss conditions under which the set is dense, or discrete, or has a compound structure, and provide a method for steering the system to a desired reachable configuration, robustly with respect to model uncertainties. Based on ideas and concepts encountered in this case study, and in some other examples we provide, we turn back to the most general aspects of the problem and investigate the possible generalization of the notion of (kinematic) nonholonomy to nonsmooth, discrete, and hybrid dynamical systems. To capture the essence of phenomena commonly regarded as "nonholonomic," at least two irreducible concepts are to be defined, of "internal" and "external" nonholonomy, which may coexist in the same system. These definitions are instantiated by examples.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 5 )