By Topic

Dynamic programming equations for discounted constrained stochastic control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, R.C. ; Radar Div., Naval Res. Lab., Washington, DC, USA ; Blankenship, G.L.

In this paper, the application of the dynamic programming approach to constrained stochastic control problems with expected value constraints is demonstrated. Specifically, two such problems are analyzed using this approach. The problems analyzed are the problem of minimizing a discounted cost infinite horizon expectation objective subject to an identically structured constraint, and the problem of minimizing a discounted cost infinite horizon minimax objective subject to a discounted expectation constraint. Using the dynamic programming approach, optimality equations, which are the chief contribution of this paper, are obtained for these problems. In particular, the dynamic programming operators for problems with expectation constraints differ significantly from those of standard dynamic programming and problems with worst-case constraints. For the discounted cost infinite horizon cases, existence and uniqueness of solutions to the dynamic programming equations are explicitly shown by using the Banach fixed point theorem to show that the corresponding dynamic programming operators are contractions. The theory developed is illustrated by numerically solving the constrained stochastic control dynamic programming equations derived for simple example problems. The example problems are based on a two-state Markov model that represents an error prone system that is to be maintained.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 5 )