Cart (Loading....) | Create Account
Close category search window

Modeling frequency-dependent losses in ferrite cores

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wilson, P.R. ; Dept. of Electron. & Comput. Sci., Univ. of Southampton, UK ; Ross, J.N. ; Brown, A.D.

We suggest a practical approach for modeling frequency-dependent losses in ferrite cores for circuit simulation. Previous work has concentrated on the effect of eddy-current losses on the shape of the B--H loop, but in this paper we look at the problem from the perspective of energy loss and propose a different network for accurately modeling power loss in ferrite cores. In power applications, the energy loss across the frequency range can have a profound effect on the efficiency of the system, and a simple ladder network in the magnetic domain is not always adequate for this task. Simulations and measurements demonstrate the difference in this approach from the RL ladder network models both in the small-signal and large-signal contexts.

Published in:

Magnetics, IEEE Transactions on  (Volume:40 ,  Issue: 3 )

Date of Publication:

May 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.