By Topic

Perception control with improved expectation learning through multilayered neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guirnaldo, S. ; Dept. of Production Control Technol., Saga Univ., Japan ; Watanabe, K. ; Izumi, K. ; Kiguchi, K.

In this paper, we investigate the viability of multilayered neural network (NN)-based extension of a conventional "perception" control concept. The perception process selects and completes the information from the system to be controlled before passing it to the controlling agent so that control is not lost when sensory information from the system is incomplete. The perception process produces an expectation of the next set of information to be received from the system. The expectation is used to replace missing parts of the information received and it also influences the next perception. In the existing work, each of the expectation elements is linearly acquired such that the expectation tells only the dominant information in the recent past, i.e., this approach has no capability to sense the trend and the dynamics in the information. This handicap could become a serious problem when the perception process is applied to real physical systems. Here, we introduce an extension of the perception control process by using a radial basis function (RBF) feedforward NN to learn the trend and the dynamics in the information and produce the expectation of the next observation. Through some simulation comparisons, we show that the proposed RBFNN-based method is better than the existing one.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 3 )