By Topic

Articulated pose identification with sparse point features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baihua Li ; Dept. of Comput. Sci., Univ. of Wales, Aberystwyth, UK ; Qinggang Meng ; H. Holstein

We propose a general algorithm for identifying an arbitrary pose of an articulated subject with sparse point features. The algorithm aims to identify a one-to-one correspondence between a model point-set and an observed point-set taken from freeform motion of the articulated subject. We avoid common assumptions such as pose similarity or small motions with respect to the model, and assume no prior knowledge from which to infer an initial or partial correspondence between the two point-sets. The algorithm integrates local segment-based correspondences under a set of affine transformations, and a global hierarchical search strategy. Experimental results, based on synthetic pose and real-world human motion data demonstrate the ability of the algorithm to perform the identification task. Reliability is increasingly compromised with increasing data noise and segmental distortion, but the algorithm can tolerate moderate levels. This work contributes to establishing a crucial self-initializing identification in model-based point-feature tracking for articulated motion.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:34 ,  Issue: 3 )