By Topic

Providing QoS through machine-learning-driven adaptive multimedia applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ruiz, P.M. ; Univ. of Murcia, Spain ; Botia, J.A. ; Gomez-Skarmeta, A.

We investigate the optimization of the quality of service (QoS) offered by real-time multimedia adaptive applications through machine learning algorithms. These applications are able to adapt in real time their internal settings (i.e., video sizes, audio and video codecs, among others) to the unpredictably changing capacity of the network. Traditional adaptive applications just select a set of settings to consume less than the available bandwidth. We propose a novel approach in which the selected set of settings is the one which offers a better user-perceived QoS among all those combinations which satisfy the bandwidth restrictions. We use a genetic algorithm to decide when to trigger the adaptation process depending on the network conditions (i.e., loss-rate, jitter, etc.). Additionally, the selection of the new set of settings is done according to a set of rules which model the user-perceived QoS. These rules are learned using the SLIPPER rule induction algorithm over a set of examples extracted from scores provided by real users. We will demonstrate that the proposed approach guarantees a good user-perceived QoS even when the network conditions are constantly changing.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 3 )