By Topic

Polarization-dependent coupling in twin-core photonic crystal fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lin Zhang ; Dept. of Precision Instrum., Tsinghua Univ., Beijing, China ; Changxi Yang

The polarization dependence of light coupling in photonic crystal fibers (PCFs) with sixfold symmetric dual cores and highly birefringent dual cores are numerically investigated. The characteristics of PCF-based couplers, such as coupling length, extinction ratio and form birefringence, are examined as functions of the air-hole size and pitch. The silica bridges between air holes take an important role in the energy transfer across the two cores. We believe that the mechanism of light coupling in PCF-based couplers is different from that of conventional waveguide couplers. The polarization dependent coupling can be reduced by adjusting the air holes around the cores of PCFs. On the other hand, the polarization dependent coupling can be enhanced by introducing high birefringence in the two cores.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 5 )