By Topic

Constraining active contour evolution via Lie Groups of transformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. -R. Mansouri ; Div. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; D. P. Mukherjee ; S. T. Acton

We present a novel approach to constraining the evolution of active contours used in image analysis. The proposed approach constrains the final curve obtained at convergence of curve evolution to be related to the initial curve from which evolution begins through an element of a desired Lie group of plane transformations. Constraining curve evolution in such a way is important in numerous tracking applications where the contour being tracked in a certain frame is known to be related to the contour in the previous frame through a geometric transformation such as translation, rotation, or affine transformation, for example. It is also of importance in segmentation applications where the region to be segmented is known up to a geometric transformation. Our approach is based on suitably modifying the Euler-Lagrange descent equations by using the correspondence between Lie groups of plane actions and their Lie algebras of infinitesimal generators, and thereby ensures that curve evolution takes place on an orbit of the chosen transformation group while remaining a descent equation of the original functional. The main advantage of our approach is that it does not necessitate any knowledge of nor any modification to the original curve functional and is extremely straightforward to implement. Our approach therefore stands in sharp contrast to other approaches where the curve functional is modified by the addition of geometric penalty terms. We illustrate our algorithm on numerous real and synthetic examples.

Published in:

IEEE Transactions on Image Processing  (Volume:13 ,  Issue: 6 )