Cart (Loading....) | Create Account
Close category search window

Interactive visualization of three-dimensional vector fields with flexible appearance control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Han-Wei Shen ; Dept. of Comput. & Inf. Sci., Ohio State Univ., Columbus, OH, USA ; Bordoloi, U.D. ; Li, G.-S.

We present an interactive texture-based algorithm for visualizing three-dimensional steady and unsteady vector fields. The goal of the algorithm is to provide a general volume rendering framework allowing the user to compute three-dimensional flow textures interactively and to modify the appearance of the visualization on the fly. To achieve our goal, we decouple the visualization pipeline into two disjoint stages. First, flow lines are generated from the 3D vector data. Various geometric properties of the flow paths are extracted and converted into a volumetric form using a hardware-assisted slice sweeping algorithm. In the second phase of the algorithm, the attributes stored in the volume are used as texture coordinates to look up an appearance texture to generate both informative and aesthetic representations of the vector field. Our algorithm allows the user to interactively navigate through different regions of interest in the underlying field and experiment with various appearance textures. With our algorithm, visualizations with enhanced structural perception using various visual cues can be rendered in real time. A myriad of existing geometry-based and texture-based visualization techniques can also be emulated.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:10 ,  Issue: 4 )

Date of Publication:

July-Aug. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.