By Topic

A hybrid intelligent intrusion detection system to recognize novel attacks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dwen-Ren Tsai ; Dept. of Comput. Sci., Chinese Culture Univ., Taipei, Taiwan ; Wen-Pin Tai ; Chi-Fang Chang

We propose a hybrid intelligent intrusion detection system to recognize novel attacks. Current works in intrusion detection solve the anomaly detection and the misuse detection. The misuse detection cannot recognize the new types of intrusions; while the abnormal detection also suffers from the false alarms. The mechanism to detect new forms of attacks in the systems will be the most important issue for intrusion detection For this purpose, we apply the neural network approach to learn the attack definitions and the fuzzy inference approach to describe the relations of attack properties for recognition This study concentrates the focus on detecting distributed denial of service attacks to develop this system. Experiment results will verify the performance of the model.

Published in:

Security Technology, 2003. Proceedings. IEEE 37th Annual 2003 International Carnahan Conference on

Date of Conference:

14-16 Oct. 2003