Cart (Loading....) | Create Account
Close category search window
 

CMOS imager technology shrinks and image performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)
Rhodes, H. ; Micron Technol. Inc., Boise, ID, USA ; Agranov, G. ; Hong, C. ; Boettiger, U.
more authors

In this paper, we present a performance summary of CMOS imager pixels from 5.2 μm to 4.2 μm using 0.18 μm imager design rules, then to 3.2 μm using 0.15 μm imager design rules. These pixels support 1.3-megapixel, 2.0-megapixel, and 3.1-megapixel CMOS image sensors for digital still cameral (DSC) applications at 3.3 V, respectively. The 4TC pixels are all based on technology shrinks of Micron's 2P3M imager process, and each of the technology nodes report excellent CMOS imager low-noise, high-sensitivity, low-lag, and low-light performance, matching that of state-of-the-art charged-coupled device (CCD) imagers. We have put a model in place to provide the predictive performance of smaller pixels, and then use that model to discuss performance expectations down to 2.0 μm pixels. With the combination of imager design rules, pixel architecture, and process technology tailored for CMOS imagers, we see no fundamental reason that CMOS imagers should not be able to continue matching CCD performance as pixel sizes shrink.

Published in:

Microelectronics and Electron Devices, 2004 IEEE Workshop on

Date of Conference:

2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.