By Topic

Crime data mining: a general framework and some examples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hsinchun Chen ; Arizona Univ., Tucson, AZ, USA ; Chung, W. ; Xu, J.J. ; Wang, G.
more authors

A major challenge facing all law-enforcement and intelligence-gathering organizations is accurately and efficiently analyzing the growing volumes of crime data. Detecting cybercrime can likewise be difficult because busy network traffic and frequent online transactions generate large amounts of data, only a small portion of which relates to illegal activities. Data mining is a powerful tool that enables criminal investigators who may lack extensive training as data analysts to explore large databases quickly and efficiently. We present a general framework for crime data mining that draws on experience gained with the Coplink project, which researchers at the University of Arizona have been conducting in collaboration with the Tucson and Phoenix police departments since 1997.

Published in:

Computer  (Volume:37 ,  Issue: 4 )