By Topic

On the fractal dimension of sea surface backscattered signal at low grazing angle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Martorella, M. ; Dept. of the Inf. Eng., Univ. of Pisa, Italy ; Berizzi, F. ; Dalle Mese, E.

Fractal analysis of sea surface backscattering signal (sea clutter in radar terminology) represents a novel technique for the study of sea surface roughness. When Kirchhoff's assumption is satisfied, the fractal dimension of the signal is linearly related to the fractal dimension of the sea surface. Moreover, such a relationship is independent of transmitted frequency, polarization, time, space, sea wave propagation direction, incident angle (within the constraint of Kirchoff's assumption) and significant wave height. Nevertheless, for a low grazing angle, the Kirchhoff approximation does not hold and the behavior of the sea clutter fractal dimension cannot be theoretically predicted. The purpose of this paper is to investigate the fractal dimension of the sea clutter at low grazing angle, in order to extend the theoretical results. Moreover, the effects of the presence of a target on the sea surface are analyzed by means of the fractal dimension. Such an analysis is performed by using live recorded clutter data. In detail, the fractal dimension's dependence on space, time, sea wave propagation direction, sea wave height, transmitted polarization and presence of targets is investigated. A discussion on the use of the sea clutter fractal dimension for sea surface monitoring is addressed.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:52 ,  Issue: 5 )