We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Digital implementation of a line current shaping algorithm for three phase high power factor boost rectifier without input voltage sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chattopadhyay, S. ; Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India ; Ramanarayanan, V.

In this paper the implementation of a simple yet high performance digital current mode controller that achieves high power factor operation for three phase boost rectifier is described. The indicated objective is achieved without input voltage sensing and without transformation of the control variables into rotating reference frame. The controller uses the concept of resistance emulation for shaping of input current like input voltage in digital implementation. Two decoupled fixed frequency current mode controllers calculate the switching instants for equivalent single phase boost rectifiers. A combined switching strategy is developed in the form of space vectors to simultaneously satisfy the timing requirements of both the current mode controllers in a switching period. Conventional phase locked loop (PLL) is not required as converter switching is self-synchronized with the input voltage. Analytical formula is derived to obtain the steady state stability condition of the converter. A linear, low frequency, small signal model of the three phase boost rectifier is developed and verified by measurement of the voltage control transfer function. In implementation Texas Instruments's DSP TMS320F240F is used as the digital controller. The algorithm is tested on a 10-kW, 700-V dc, three phase boost rectifier.

Published in:

Power Electronics, IEEE Transactions on  (Volume:19 ,  Issue: 3 )