Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Real-time carbon content control for PECVD ZrO2 thin-film growth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dong Ni ; Process Control Group, Univ. of California, Los Angeles, CA, USA ; Yiming Lou ; Christofides, P.D. ; Sha, Lin
more authors

We present a methodology for real-time control of thin-film carbon content in a plasma-enhanced metal-organic chemical vapor deposition process using combination of online gas phase measurements obtained through optical emission spectroscopy and off-line (ex situ) measurements of film composition obtained via X-ray photoelectron spectroscopy (XPS). Initially, an estimation model of carbon content of ZrO2 thin films based on real-time optical emission spectroscopy data is presented. Then, a feedback control scheme, which employs the proposed estimation model and a proportional-integral controller, is developed to achieve carbon content control. Using this approach, a real-time control system is developed and implemented on an experimental electron cyclotron resonance high-density plasma-enhanced chemical vapor deposition system to demonstrate the effectiveness of real-time feedback control of carbon content. Experimental results of depositions and XPS analysis of deposited thin films under both open-loop and closed-loop operations are shown and compared. The advantages of operating the process under real-time feedback control in terms of robust operation and lower carbon content are demonstrated.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:17 ,  Issue: 2 )