Cart (Loading....) | Create Account
Close category search window
 

Identification and control of a nonlinear discrete-time system based on its linearization: a unified framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lingji Chen ; Sci. Syst. Co. Inc., Woburn, MA, USA ; Narendra, K.S.

This paper presents a unified theoretical framework for the identification and control of a nonlinear discrete-time dynamical system, in which the nonlinear system is represented explicitly as a sum of its linearized component and the residual nonlinear component referred to as a "higher order function." This representation substantially simplifies the procedure of applying the implicit function theorem to derive local properties of the nonlinear system, and reveals the role played by the linearized system in a more transparent form. Under the assumption that the linearized system is controllable and observable, it is shown that: 1) the nonlinear system is also controllable and observable in a local domain; 2) a feedback law exists to stabilize the nonlinear system locally; and 3) the nonlinear system can exactly track a constant or a periodic sequence locally, if its linearized system can do so. With some additional assumptions, the nonlinear system is shown to have a well-defined relative degree (delay) and zero-dynamics. If the zero-dynamics of the linearized system is asymptotically stable, so is that of the nonlinear one, and in such a case, a control law exists for the nonlinear system to asymptotically track an arbitrary reference signal exactly, in a neighborhood of the equilibrium state. The tracking can be achieved by using the state vector for feedback, or by using only the input and the output, in which case the nonlinear autoregressive moving-average (NARMA) model is established and utilized. These results are important for understanding the use of neural networks as identifiers and controllers for general nonlinear discrete-time dynamical systems.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 3 )

Date of Publication:

May 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.