By Topic

Stable adaptive neurocontrol for nonlinear discrete-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Quanmin Zhu ; Fac. of Comput., Univ. of the West of England, Bristol, UK ; Lingzhong Guo

This paper presents a novel approach in designing neural network based adaptive controllers for a class of nonlinear discrete-time systems. This type of controllers has its simplicity in parallelism to linear generalized minimum variance (GMV) controller design and efficiency to deal with complex nonlinear dynamics. A recurrent neural network is introduced as a bridge to compensation simplify controller design procedure and efficiently to deal with nonlinearity. The network weight adaptation law is derived from Lyapunov stability analysis and the connection between convergence of the network weight and the reconstruction error of the network is established. A theorem is presented for the conditions of the stability of the closed-loop systems. Two simulation examples are provided to demonstrate the efficiency of the approach.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 3 )