By Topic

Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arleo, A. ; Neurosci. Group, SONY Comput. Sci. Lab., Paris, France ; Smeraldi, F. ; Gerstner, W.

We study spatial learning and navigation for autonomous agents. A state space representation is constructed by unsupervised Hebbian learning during exploration. As a result of learning, a representation of the continuous two-dimensional (2-D) manifold in the high-dimensional input space is found. The representation consists of a population of localized overlapping place fields covering the 2-D space densely and uniformly. This space coding is comparable to the representation provided by hippocampal place cells in rats. Place fields are learned by extracting spatio-temporal properties of the environment from sensory inputs. The visual scene is modeled using the responses of modified Gabor filters placed at the nodes of a sparse Log-polar graph. Visual sensory aliasing is eliminated by taking into account self-motion signals via path integration. This solves the hidden state problem and provides a suitable representation for applying reinforcement learning in continuous space for action selection. A temporal-difference prediction scheme is used to learn sensorimotor mappings to perform goal-oriented navigation. Population vector coding is employed to interpret ensemble neural activity. The model is validated on a mobile Khepera miniature robot.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 3 )