By Topic

Energy-efficient control of rate and power in DS-CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Berggren, F. ; Dept. of Signals, R. Inst. of Technol., Kista, Sweden ; Seong-Lyun Kim

The quality of service in direct-sequence code-division multiple access (DS-CDMA) can be controlled by a suitable selection of processing gain and transmission powers. In this paper, distributed control of rate and power for best effort data services is considered. In particular, we elaborate on the problem of how to control the transmission rates for maximizing system throughput while simultaneously minimizing the transmission powers. We assume a practical scenario, where every user has a finite set of discrete transmission rates and propose a simple heuristic rate allocation scheme, greedy rate packing (GRP), applicable in both up- and downlink. The scheme can be interpreted as a practical form of water-filling, in the sense that high transmission rates are allocated to users having high link gains and low interference. We show that under certain conditions, GRP will give maximum throughput and that it can be extended to guarantee a minimum data rate while maximizing network excess capacity. We suggest and analyze a distributed power control algorithm to control the intercell interference when GRP is applied to a multicellular system. Numerical results show that the proposed transmission scheme can significantly decrease the power levels while maintaining high throughput.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 3 )