Cart (Loading....) | Create Account
Close category search window
 

Layered space-frequency equalization in a single-carrier MIMO system for frequency-selective channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xu Zhu ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., China ; Murch, R.D.

Frequency-domain equalization (FDE) has been shown to be an effective approach to combat frequency-selective wireless channels. In this letter, we propose a layered space-frequency equalization (LSFE) architecture for a single-carrier (SC) multiple-input multiple-output (MIMO) system, where MIMO FDE is employed at each stage or (layer) of detection. At a particular stage, a group of the best data streams in the minimum mean square error sense are detected and are canceled from the received signals. Simulation results show that our proposed LSFE structures can outperform layered space-time equalization (LSTE) structures and uncoded orthogonal frequency division multiplex (OFDM), especially at a higher delay spread. Performance is enhanced further, by incorporating the FDE with time-domain decision feedback at each stage of LSFE. We also provide performance analysis for LSFE, in comparison with OFDM.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 3 )

Date of Publication:

May 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.