By Topic

BER performance of a uniform circular array versus a uniform linear array in a mobile radio environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiann-An Tsai ; Mobile & Portable Radio Res. Group, Virginia Polytech. Inst., Blacksburg, VA, USA ; Buehrer, R.Michael ; Woerner, B.D.

In this letter, we present a comparison between the bit error rate (BER) performance of a uniform circular array (UCA) and a uniform linear array (ULA) assuming quadrature phase-shift keying (QPSK) and maximal-ratio-combining (MRC) in a mobile radio communication environment. The results are based on analysis, assuming a flat Rayleigh fading channel with omni-directional antennnas and considering the azimuthal plane only. The analytical BER is derived as a function of the spatial fading correlation for both types of antenna arrays. Results show that for similar aperture sizes the UCA outperforms the ULA when considering all angles-of-arrival. However, there is considerable variability over central angle-of-arrival (AOA) for low-to-moderate angle spreads. For angles-of-arrival concentrated near the broadside of the linear array, the ULA typically performs as well as or better than the UCA. A truncated Gaussian AOA (AOA) distribution is assumed to model spatial correlation and the numerical results focus on four element arrays.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 3 )