Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An integrated inverter with maximum power tracking for grid-connected PV systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ho, B.M.T. ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Chung, H.S.H. ; Hui, S.Y.R.

An inverter for grid-connected photovoltaic systems is presented in this paper. It can globally locate the maximum power point of the panel over wide insolation and feed the solar energy to the grid. Its structure mainly integrates a previously developed maximum point tracking method and output current shaping function into a buck-boost-derived converter and then inverts the shaped current through a grid frequency bridge to the grid. Instead of having a storage capacitor connecting in parallel with the converter output, series connection is used, so that the required capacitor voltage rating is lower than that in classical inverters. Most importantly, the inverter output current harmonics are less sensitive to the capacitor value. A 30 W laboratory prototype has been built. The tracking capability, inversion efficiency, and large-signal responses at different insolations have been investigated. Detailed analysis on the inverter performance has been performed. The theoretical predictions are verified with the experimental results.

Published in:

Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE  (Volume:3 )

Date of Conference: