Cart (Loading....) | Create Account
Close category search window
 

Cabannes versus Rayleigh scattering and terrestrial backscatter ratio revisited in LITE in support of CALIPSO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, X. ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; Reagan, J.A. ; Dobler, J. ; Rubio, M.

In order to make optimal quantitative use of multi-wavelength spaceborne lidar data in the upcoming satellite lidar mission CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), it is essential that the lidar be well calibrated. In view of the use of a narrow bandwidth receiver filter in CALIPSO, it is necessary to quantitatively distinguish Cabannes scattering from the full bandwidth Rayleigh scattering for correct calibration of the 532 nm channel based on Rayleigh normalization. This also affects the 1064 nm calibration when it is implemented by the 532/1064 calibration ratio approach. Secondly, the calibration obtained by normalizing to a nearly Rayleigh background signal depends on the backscatter ratio R, defined as the ratio of the total backscattering coefficient [aerosol backscattering coefficient, βa(z), plus molecular backscattering coefficient, βm(z)] to the molecular backscattering coefficient, βm(z). How well this backscatter ratio, R, can be estimated in clean air regions will play an important role in lidar measurements of aerosol and cloud by CALIPSO. The LITE (Lidar In-space Technology Experiment) mission, the first lidar designed for atmospheric studies to fly in Earth orbit, provided an important database for doing the analysis and simulations for future lidar systems on free-flying satellite platforms. This paper presents calculations of Rayleigh/Cabannes scattering cross sections that should apply for CALIPSO by incorporating different depolarization factors appropriate for different spectral bandwidths. LITE data are analyzed to recover estimates of R characteristic of clean air regions. Errors in recovering R resulting from uncertainties in the calibration constant and two-way transmission from the calibration reference height are simulated and assessed.

Published in:

Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International  (Volume:7 )

Date of Conference:

21-25 July 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.