Cart (Loading....) | Create Account
Close category search window
 

Learning Bayesian classifiers for a visual grammar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Aksoy, S. ; Insightful Corp., Seattle, WA, USA ; Koperski, K. ; Tusk, C. ; Marchisio, G.
more authors

A challenging problem in image content extraction and classification is building a system that automatically learns high-level semantic interpretations of images. We describe a Bayesian framework for a visual grammar that aims to reduce the gap between low-level features and user semantics. Our approach includes learning prototypes of regions and their spatial relationships for scene classification. First, naive Bayes classifiers perform automatic fusion of features and learn models for region segmentation and classification using positive and negative examples for user-defined semantic land cover labels. Then, the system automatically learns how to distinguish the spatial relationships of these regions from training data and builds visual grammar models. Experiments using LANDSAT scenes show that the visual grammar enables creation of higher level classes that cannot be modeled by individual pixels or regions. Furthermore, learning of the classifiers requires only a few training examples.

Published in:

Advances in Techniques for Analysis of Remotely Sensed Data, 2003 IEEE Workshop on

Date of Conference:

27-28 Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.