Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Synthesis and design of novel in-line filters with one or two real transmission zeros

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Amari, S. ; Dept. of Electr. & Comput. Eng., R. Mil. Coll., Kingston, Ont., Canada ; Rosenberg, U.

A direct synthesis and design technique of pseudoelliptic in-line filters with one or two real transmission zeros (TZs) is presented. It is shown that the phase of the reflection coefficient must be properly and uniquely determined for the synthesis to succeed. The TZs (attenuation poles) are brought about and independently controlled by dedicated resonators at the input and output. Each attenuation pole is located at the resonant frequency of its dedicated resonator. Frequency-independent reactances at the input and output are used to replace the phase shifts used in the extracted-pole technique. This novel approach is verified by several waveguide cavity filter designs. The analyzed characteristics of these filters, obtained with commercial full-wave computer-aided-design tools, agree very well with the synthesis results. A third-order filter with one TZ above the passband is designed, fabricated, and measured. Excellent agreement between the measurement and simulation is obtained.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 5 )