By Topic

End-to-end TCP-friendly streaming protocol and bit allocation for scalable video over wireless Internet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fan Yang ; Dept. of Comput. Sci., Nanjing Univ., China ; Qian Zhang ; Wenwu Zhu ; Ya-Qin Zhang

With the convergence of wired-line Internet and mobile wireless networks, as well as the tremendous demand on video applications in mobile wireless Internet, it is essential to an design effective video streaming protocol and resource allocation scheme for video delivery over wireless Internet. Taking both network conditions in the Internet and wireless networks into account, in this paper, we first propose an end-to-end transmission control protocol (TCP)-friendly multimedia streaming protocol for wireless Internet, namely WMSTFP, where only the last hop is wireless. WMSTFP can effectively differentiate erroneous packet losses from congestive losses and filter out the abnormal round-trip time values caused by the highly varying wireless environment. As a result, WMSTFP can achieve higher throughput in wireless Internet and can perform rate adjustment in a smooth and TCP-friendly manner. Based upon WMSTFP, we then propose a novel loss pattern differentiated bit allocation scheme, while applying unequal loss protection for scalable video streaming over wireless Internet. Specifically, a rate-distortion-based bit allocation scheme which considers both the wired and the wireless network status is proposed to minimize the expected end-to-end distortion. The global optimal solution for the bit allocation scheme is obtained by a local search algorithm taking the characteristics of the progressive fine granularity scalable video into account. Analytical and simulation results demonstrate the effectiveness of our proposed schemes.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:22 ,  Issue: 4 )