By Topic

The effect of temperature rise of the fuzzy logic-controlled braking resistors on transient stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ali, M.H. ; Dept. of Electr. & Electron. Eng., Kitami Inst. of Technol., Hokkaido, Japan ; Murata, T. ; Tamura, J.

Braking resistor is a very powerful tool to improve transient stability in a power system. Usually, a fixed value of the braking resistor is considered for the transient stability analysis. However, when the braking resistor is in operation, temperature of the resistor material rises above ambient temperature which ultimately causes the resistance value to increase. This paper analyzes the effect of the temperature rise of the fuzzy logic-controlled braking resistor on the transient stability in a multimachine power system. The performance of the braking resistor scheme with fuzzy controller is compared to that of with conventional proportional-integral-derivative (PID) controller. Simulation results of both balanced and unbalanced faults at different points in the system indicate that the temperature rise of the fuzzy logic-controlled braking resistors has little or almost no effect on the transient stability of the multimachine power system. Moreover, it is found that the performance of fuzzy logic controller is better than that of conventional PID controller. Thus, the proposed fuzzy control strategy provides a simple and effective method of transient stability enhancement.

Published in:

Power Systems, IEEE Transactions on  (Volume:19 ,  Issue: 2 )