Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

New method for generators' angles and angular velocities prediction for transient stability assessment of multimachine power systems using recurrent artificial neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bahbah, A.G. ; Clemson Univ., SC, USA ; Girgis, A.A.

Recurrent radial basis function (RBF) and multilayer perceptron (MLP) artificial neural network (ANN) schemes are proposed for dynamic system modeling, and generators' angles and angular velocities prediction for transient stability assessment. The method is presented for multimachine power systems. In this scheme, transient stability is assessed based on monitoring generators' angles and angular velocities with time, and checking whether they exceed the specified limits for system stability or not. Data generation schemes have been proposed. The proposed recurrent ANN scheme is not sensitive to fault locations. It is only dependent on the postfault system configuration.

Published in:

Power Systems, IEEE Transactions on  (Volume:19 ,  Issue: 2 )