Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Hybrid hard-decision iterative decoding of regular low-density parity-check codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zarrinkhat, P. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, Ont., Canada ; Banihashemi, A.H.

Hybrid decoding means to combine different iterative decoding algorithms with the aim of improving error performance or decoding complexity. In this work, we introduce "time-invariant" hybrid (HTI) algorithms, and using density evolution show that for regular low-density parity-check (LDPC) codes and binary message-passing algorithms, HTI algorithms perform remarkably better than their constituent algorithms. We also show that compared to "switch-type" hybrid (HST) algorithms, such as Gallager's algorithm B, where a comparable improvement is obtained by switching between different iterative decoding algorithms, HTI algorithms are far less sensitive to channel conditions and thus can be practically more attractive.

Published in:

Communications Letters, IEEE  (Volume:8 ,  Issue: 4 )