By Topic

DART: 3-D model of optical satellite images and radiation budget

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

DART (Discrete Anisotropic Radiative Transfer) was developed in 1996 for simulating radiative transfer in 3D scenes. Since then, it was greatly improved to make it more accurate, comprehensive and operational (e.g., simulation of thermal infrared and atmospheric radiative transfer). Presently, a single DART simulation gives 2 major products. (1) 3-D radiation budget of the Earth-Atmosphere system. (2) Optical remote sensing images at any altitude from bottom up to top of the atmosphere, for many view directions, simultaneously in several spectral bands, from the visible up to thermal infrared. DART works with natural landscapes (i.e., forests, field mosaics, etc.) made of trees, grass, rivers, etc. and urban landscapes made of buildings, roads, etc. Topography is simulated with digital elevation models. Atmosphere (vertical profiles, etc.) and Earth surface (spectral reflectance, etc.) databases can be used, sensor characteristics can be accounted for, etc. Moreover, a Graphic User Interface (GUI) is used to input scene parameters and to display scene and DART simulations. Recent improvements of DART (patent (PCT/FR 02/01181)) are presented here.

Published in:

Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International  (Volume:5 )

Date of Conference:

2003