By Topic

Multi-resolution imaging spectroscopy resolving the structure of heterogeneous canopies for forest fire fuel properties mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kotz, B. ; Dept. of Geogr., Zurich Univ., Switzerland ; Schaepman, M. ; Morsdorf, F. ; Itten, K.
more authors

Coniferous forests represent canopies with a high heterogeneity in the horizontal and as well in the vertical dimension. Consequently the interaction of incident radiation is dominated by the complex 3-D canopy structure and architecture. Radiative transfer approaches based on coupled leaf and canopy radiative transfer models still allow the simulation of the canopy reflectance as a function of leaf optical properties, canopy structure and viewing geometry as well as the retrieval of biophysical and biochemical canopy variables. High resolution imaging spectrometry supported by LIDAR data and radiative transfer models of different levels of complexities (SAIL, GeoSAIL) are employed to assess the influence of canopy heterogeneity and structure at different spatial scales. We discuss the relevance of single scene components and canopy structure to the recorded canopy reflectance and present a strategy to support radiative transfer models for biophysical and biochemical parameter retrieval relevant for forest fires.

Published in:

Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International  (Volume:4 )

Date of Conference:

21-25 July 2003