By Topic

Voiced-speech representation by an analog silicon model of the auditory periphery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, W. ; Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Andreou, A.G. ; Goldstein, M.H., Jr.

An analog CMOS integration of a model for the auditory periphery is presented. The model consists of middle ear, basilar membrane, and hair cell/synapse modules which are derived from neurophysiological studies. The circuit realization of each module is discussed, and experimental data of each module's response to sinusoidal excitation are given. The nonlinear speech processing capabilities of the system are demonstrated using the voiced syllable |ba|. The multichannel output of the silicon model corresponds to the time-varying instantaneous firing rates of auditory nerve fibers that have different characteristic frequencies. These outputs are similar to the physiologically obtained responses. The actual implementation uses subthreshold CMOS technology and analog continuous-time circuits, resulting in a real-time, micropower device with potential applications as a preprocessor of auditory stimuli

Published in:

Neural Networks, IEEE Transactions on  (Volume:3 ,  Issue: 3 )