By Topic

Phase and magnitude perceptual sensitivities in nonredundant complex wavelet representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wakin, M.B. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Orchard, M.T. ; Baraniuk, R.G. ; Chandrasekaran, V.

The recent development of a nonredundant complex wavelet transform allows a novel framework for image analysis. Work on this representation has recognized that the phase and magnitude of complex coefficients can be related to important geometric properties in images. Existing work on human visual system (HVS) sensitivity offers little guidance in understanding the relative importance of noise (e.g., introduced by lossy coding) in phase components and magnitude components. The distinct geometric significance of the two components would suggest that their respective errors relate to different types of image structure, and thus each would have its own unique HVS sensitivity. In this paper, we extend the study of just-noticeable-differences (JND) to magnitude/phase sensitivities in complex wavelet representations and outline and report on preliminary experiments characterizing them.

Published in:

Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on  (Volume:2 )

Date of Conference:

9-12 Nov. 2003