By Topic

General rules for signal flow graph modeling and analysis of dc-dc converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
veerachary, M. ; Indian Inst. of Technol., New Delhi, India

Signal flow graph (SFG) nonlinear modeling approach is well known for modeling dc-dc converters. However, all possible SFGs of a given dc-dc converter system will not yield the generalized graph. A systematic procedure and guidelines for developing unified flow graph models of the dc-dc boost converters, from which complete behavior can be determined is presented. Usefulness of the proposed method is demonstrated through examples. As an illustration a 2-cell cascade boost and interleaved boost converter systems are taken as examples. Derivation of large, small-signal and steady-state models from generalized flow graph is also demonstrated. Large-signal model is developed and programmed in TUTSIM simulator. Large-signal, responses against supply and load disturbances are obtained. Experimental observations are provided to validate the proposed algorithm.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:40 ,  Issue: 1 )