By Topic

On the capacity of MIMO broadcast channel with partial side information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Sharif ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; B. Hassibi

Since having full channel state information in the transmitter is not reasonable in many applications and lack of channel knowledge does not lead to linear growth of the sum rate capacity as the number transmit antennas increases, it is therefore of interest to investigate transmission schemes that employ only partial CSI. In this paper, we propose a scheme that constructs M random beams and that transmits information to the users with the highest signal-to-noise-plus-interference ratios (SINRs), which can be made available to the transmitter with very little feedback. For fixed M and n increasing, the sum-rate capacity of our scheme scales as M log log n, which is precisely the same scaling obtained with perfect channel information. We furthermore show that linear increase in capacity can be obtained provided that M does not grow faster than O(log n). We also study the fairness of our scheduling scheme and show that, when M is large enough, the system becomes interference-dominated and the probability of transmitting to any user converges to 1/n, irrespective of its path-loss. In fact, using M = α log n transmit antennas emerges as a desirable operating point, both in terms of providing linear increase in capacity as well as in guaranteeing fairness.

Published in:

Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on  (Volume:1 )

Date of Conference:

9-12 Nov. 2003