By Topic

Bounds on the error performance of coding for nonindependent Rician-fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Gagnon ; Dept. of Electr. & Comput. Eng., Ecole Polytech. de Montreal, Que., Canada ; D. Haccoun

New upper bounds on the error performance of coded systems for Rician channels are presented. The fading channels need not be fully interleaved to obtain meaningful performance results. These bounds hold for coherent, differentially coherent and noncoherent demodulation of binary signals. They provide a useful analytical approach to the evaluation of the error performance of convolutional or block coding and they may be generalized to M-ary signals and trellis modulation. The approach allows for complex bounds using the fine structure of the code, for simpler bounds similar to those on memoryless channels and finally for a random coding bound using the cutoff rate of the channel. The analysis thus permits a step by step evaluation of coded error performances for Rician-fading channels

Published in:

IEEE Transactions on Communications  (Volume:40 ,  Issue: 2 )