By Topic

User capacity of asynchronous CDMA systems with matched filter receivers and optimum signature sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Ulukus ; Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA ; R. D. Yates

For a symbol-asynchronous (but chip-synchronous) single-cell code-division multiple-access (CDMA) system, we define a system-wide quantity called the total squared asynchronous correlation (TSAC) which, for arbitrary signature sets, depends on the users' delay profile. We develop a lower bound for TSAC that is independent of the users' delays. We show that if the signature set achieves this TSAC lower bound, then the user capacity of the asynchronous CDMA system using matched filters becomes the same as that of a single-cell synchronous CDMA system; in this case, there is no loss in user capacity due to asynchronism. We present iterative signature adaptation algorithms, which, when executed sequentially by the users, appear to converge to these optimum signature sequences; however, the existence, for all user delay profiles, of signature sequences achieving this lower bound remains a significant open problem.

Published in:

IEEE Transactions on Information Theory  (Volume:50 ,  Issue: 5 )