By Topic

Efficient finite-element-based time-domain beam propagation analysis of optical integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Obayya, S.S.A. ; Dept. of Design & Syst. Eng., Brunel Univ., Uxbridge, UK

In this paper, a novel numerically efficient time-domain beam propagation method based on the versatile finite element method (FETDBPM) is presented for the analysis of arbitrarily shaped optical integrated circuits. Lumping the global mass matrix into a diagonal matrix, an explicit full band finite-element time-domain propagation algorithm that needs only matrix-vector multiplication at each time step is derived. The accuracy and efficiency of the proposed FETDBPM is demonstrated through the analysis of propagation in different photonic integrated structures.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:40 ,  Issue: 5 )