By Topic

Compact femtosecond lasers based on novel multipass cavities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper provides a comprehensive description of the design of compact femtosecond solid-state lasers that are based on novel multipass cavity (MPC) configurations to extend the resonator length. Of special importance are the q-preserving MPCs, which leave invariant the original spotsize distribution and Kerr lens mode-locking point of the short cavity. The general design guidelines of q-preserving MPCs are first reviewed and a novel configuration is proposed for the case where the MPC consists of notch mirrors. A class of non-q-preserving compact cavities is also analyzed and conditions needed to minimize the deviation from the q-preserving configuration are discussed. The design and performance of a q-preserving and a non-q-preserving mode-locked Ti:Al2O3 laser are then described as examples. These compact oscillators measuring only 30 cm × 45 cm could produce pulses as short as 19 fs at a repetition rate of around 31 MHz. Up to ∼3.6 nJ of pulse energy could be obtained with only ∼1.5 W of pump power. Finally, two-mirror MPC geometries are examined to investigate the limits of compactness and energy scaling.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:40 ,  Issue: 5 )