By Topic

Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chao-Yuan Jin ; State Key Lab. on Integrated Optoelectronics, Chinese Acad. of Sci., Beijing, China ; Yong-Zhen Huang ; Li-Juan Yu ; Shen-Ling Deng

A detailed model for semiconductor linear optical amplifiers (LOAs) with gain clamping by a vertical laser field is presented, which accounts the carrier and photon density distribution in the longitudinal direction as well as the facet reflectivity. The photon iterative method is used in the simulation with output amplified spontaneous emission spectrum in the wide band as iterative variables. The gain saturation behaviors and the noise figure are numerically simulated, and the variation of longitudinal carrier density with the input power is presented which is associated with the on-off state of the vertical lasers. The results show that the LOA can have a gain spectrum clamped in a wide wavelength range and have almost the same value of noise figure as that of conventional semiconductor optical amplifiers (SOAs). Numerical results also show that an LOA can have a noise figure about 2 dB less than that of the SOA gain clamped by a distributed Bragg reflector laser.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:40 ,  Issue: 5 )