Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Fundamental investigation in two flashover-based trigger methods for low-pressure gas discharge switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Iberler, M. ; Phys. Dept., Univ. of Erlangen-Nurnberg, Erlangen, Germany ; Bischoff, R. ; Frank, Klaus ; Petzenhauser, Isfried
more authors

Modern switches for pulse-power technology have special requirements such as long lifetime, reliability in a wide pressure and voltage range, as well as small delay time. In order to meet these requirements, two trigger methods were developed and examined. These two different trigger methods based on a flashover were tested for the emission behavior by variation of different parameters. The first configuration is a semiconductor surface flashover trigger, where electron emission is based on a surface flashover between the contact area of a copper spring and a carbide cylinder. The second trigger concept is the high-dielectric trigger, where electrons are released by the field emission effect at the transition between metal-vacuum and dielectric. For this system, high dielectric materials with dielectric constants in the order of 2000 are available. The electrical and optical measurements of both trigger systems were done in a modular structured vacuum chamber. For lower pressure, the high-dielectric trigger shows better performances and higher emitted charge of the electron emission within all adjusted parameters like gas pressure, applied voltage, and different wirings. In addition to the higher emitted charge, the emitted electrons from the high-dielectric material have higher energies. For the lifetime characteristic, the high-dielectric trigger shows lifetimes much higher than 100 million discharges.

Published in:

Plasma Science, IEEE Transactions on  (Volume:32 ,  Issue: 1 )