By Topic

Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Takaki, K. ; Dept. of Electr. & Electron. Eng., Iwate Univ., Japan ; Shimizu, M. ; Mukaigawa, S. ; Fujiwara, T.

An experimental study on nitrogen oxides (NOx) removal from a simulated diesel engine exhaust gas was carried out in geometry of various electrodes for dielectric barrier discharge reactor to improve the removal efficiency. The electrodes employed in the experiment were a plane, a trench, and a multipoint geometry. The right-pyramids, which were used as multipoint, had 45° tip angle and a height of 1-5 mm. The multipoint electrodes have 528-5000 pyramids in an area of 132 cm2 (22 × 6 cm). The trench electrode has knife-edge rails with 5-mm height and 45° tip angle. The alumina dielectric barrier coated plane electrode was used as a high-voltage electrode, to which a sinusoidal high voltage was applied with frequency of several tens kilohertz. The N2:O2=9:1 mixed gas containing 200-ppm NO was used as simulated gas with gas flow rate of 5 L/min. NO removals in case of the plane and the trench electrodes were lower than that in case of multipoint one. NO removal yield drastically decreases with increasing the number of pyramids on the electrode. NO removal efficiency was almost independent of the pyramid projection height under our experimental condition.

Published in:

Plasma Science, IEEE Transactions on  (Volume:32 ,  Issue: 1 )