By Topic

Embedded deterministic test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rajski, J. ; Mentor Graphics Corp., Wilsonville, OR, USA ; Tyszer, J. ; Kassab, M. ; Mukherjee, N.

This paper presents a novel test-data volume-compression methodology called the embedded deterministic test (EDT), which reduces manufacturing test cost by providing one to two orders of magnitude reduction in scan test data volume and scan test time. The presented scheme is widely applicable and easy to deploy because it is based on the standard scan/ATPG methodology and adopts a very simple flow. It is nonintrusive as it does not require any modifications to the core logic such as the insertion of test points or logic bounding unknown states. The EDT scheme consists of logic embedded on a chip and a new deterministic test-pattern generation technique. The main contributions of the paper are test-stimuli compression schemes that allow us to deliver test data to the on-chip continuous-flow decompressor. In particular, it can be done by repeating certain patterns at the rates, which are adjusted to the requirements of the test cubes. Experimental results show that for industrial circuits with test cubes with very low fill rates, ranging from 3% to 0.2%, these schemes result in compression ratios of 30 to 500 times. A comprehensive analysis of the encoding efficiency of the proposed compression schemes is also provided.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:23 ,  Issue: 5 )