Cart (Loading....) | Create Account
Close category search window
 

A hybrid energy-estimation technique for extensible processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yunsi Fei ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Ravi, S. ; Raghunathan, A. ; Jha, N.K.

In this paper, we present an efficient and accurate methodology for estimating the energy consumption of application programs running on extensible processors. Extensible processors, which are getting increasingly popular in embedded system design, allow a designer to customize a base processor core through instruction set extensions. Existing processor energy macromodeling techniques are not applicable to extensible processors, since they assume that the instruction set architecture as well as the underlying structural description of the micro-architecture remain fixed. Our solution to the above problem is a hybrid energy macromodel suitably parameterized to estimate the energy consumption of an application running on the corresponding application-specific extended processor instance, which incorporates any custom instruction extension. Such a characterization is facilitated by careful selection of macromodel parameters/variables that can capture both the functional and structural aspects of the execution of a program on an extensible processor. Another feature of the proposed energy characterization flow is the use of regression analysis to build the macromodel. Regression analysis allows for in-situ characterization, thus allowing arbitrary test programs to be used during macromodel construction. We validated the proposed methodology by characterizing the energy consumption of a state-of-the-art extensible processor (Tensilica's Xtensa). We used the macromodel to analyze the energy consumption of several benchmark applications with custom instructions. The mean absolute error in the macromodel estimates is only 3.3%, when compared to the energy values obtained by a commercial tool operating on the synthesized register-transfer level (RTL) description of the custom processor. Our approach achieves an average speedup of three orders of magnitude over the commercial RTL energy estimator. Our experiments show that the proposed methodology also achieves good relative accuracy, which is essential in energy optimization studies. Hence, our technique is both efficient and accurate.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:23 ,  Issue: 5 )

Date of Publication:

May 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.