By Topic

PMD-induced fluctuations of bit-error rate in optical fiber systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents a method that allows evaluating the performance of an optical fiber system where bit errors result from a complex interplay of spontaneous noise generated in optical amplifiers and birefringent disorder of the transmission fiber. We demonstrate that in the presence of temporal fluctuations of birefringence characteristics, the bit-error rate (BER) itself is insufficient for characterizing system performance. Adequate characterization requires introducing the probability distribution function (PDF) of the BER obtained by averaging over many realizations of birefringent disorder. Our theoretical analysis shows that this PDF has an extended tail indicating the importance of anomalously large values of BER. We present the results of comprehensive analysis of the following issues: 1) The dependence of the PDF tail shape on detection details, such as filtering and regular temporal shift adjustment; 2) the changes in the PDF of BER that occur when the first- or higher order polarization mode dispersion (PMD) compensation techniques are applied; 3) an alternative PMD compensation method capable of providing more efficient suppression of extreme outages.

Published in:

Journal of Lightwave Technology  (Volume:22 ,  Issue: 4 )