By Topic

Polarization-mode-dispersion emulator using variable differential-Group-delay (DGD) elements and its use for experimental importance sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
L. Yan ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; M. C. Hauer ; Y. Shi ; X. S. Yao
more authors

We demonstrate a practical polarization-mode-dispersion (PMD) emulator using programmable differential-group-delay (DGD) elements. The output PMD statistics of the emulator can be chosen by varying the average of the Maxwellian DGD distribution applied to each element. The emulator exhibits good stability and repeatability in a laboratory environment. In addition, we demonstrate how this emulator may be used to experimentally employ the powerful technique of importance sampling to quickly generate extremely low probability events. This technique is used to measure the Q-factor degradation due to both average and rare PMD values in a 10-Gb/s transmission system.

Published in:

Journal of Lightwave Technology  (Volume:22 ,  Issue: 4 )