By Topic

Force tracking impedance control of robot manipulators under unknown environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seul Jung ; Intelligent Syst. & Emotional Eng. Lab., Chungnam Nat. Univ., Daejeon, South Korea ; Hsia, T.C. ; Bonitz, R.G.

In this paper, a new simple stable force tracking impedance control scheme that has the capability to track a specified desired force and to compensate for uncertainties in environment location and stiffness as well as in robot dynamic model is proposed. The uncertainties in robot dynamics are compensated by the robust position control algorithm. After contact, in force controllable direction the new impedance function is realized based on a desired force, environment stiffness and a position error. The new impedance function is simple and stable. The force error is minimized by using an adaptive technique. Stability and convergence of the adaptive technique are analyzed for a stable force tracking execution. Simulation studies with a three link rotary robot manipulator are shown to demonstrate the robustness of the proposed scheme under uncertainties in robot dynamics, and little knowledges of environment position and environment stiffness. Experimental results are carried out to confirm the proposed controller's performance.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:12 ,  Issue: 3 )