By Topic

Predicted performance of high-speed integrated-injection logic using InGaAs/InP heterojunction bipolar transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Houston, P.A. ; Dept. of Electron. & Electr. Eng., Sheffield Univ., UK ; Lee, K.-C.

By the use of analytical expressions and SPICE simulation, the switching performance of integrated injection logic (I2L) using heterojunction bipolar transistors (HBTs) has been investigated. A proposed inverter configuration using InP/InGaAs HBTs which avoids saturation in the p-n-p injector has predicted propagation delays of 16 ps at only 3-mW power dissipation. Transient response analysis illustrates the importance of reducing parasitic resistances in the structure. Ring oscillator simulations indicate that switching speeds approaching those of emitter-coupled logic but with advantages in high density and low power are possible

Published in:

Electron Devices, IEEE Transactions on  (Volume:39 ,  Issue: 5 )